

DÉPARTEMENT DU GARD

Commune de SAINT MAMERT DU GARD

Projet TERRES DU SOLEIL
Lotissement "Le clos de
Gajane"
Avis sur la sensibilité des sols au
risque retrait gonflement
Loi ÉLAN
Étude G1 ES et PGC
Norme NF P 94-500 11/2013

Février 2022

ARGEO

161, rue du Levant - 30420 Calvisson Tél : 04.66.01.97.88 - Fax : 04.66.01.97.54 -

E-Mail: <u>olivier.martin@argeo.fr</u>
Site: www.argeo.fr

SOMMAIRE

1-INTRODUCTION	3
2- SITUATION ET CONTEXTE GÉOLOGIQUE	3
2.1 Situation géographique2. Situation cadastrale	3
2.3 Contexte géologique	4
3- RÉSULTATS DES SONDAGES	4
4 – ANALYSE EN LABORATOIRE	5
4.1 Classification du matériau	5
5 - CONCLUSIONS	6
Faciès des colluvions graveleuses :	
Substratum Marno-gréseux :	6

2

1-INTRODUCTION

Dans le cadre la création d'un futur lotissement sur un terrain de la commune de Saint Mamert du Gard dans le Gard, nous avons réalisé une étude d'avis géologique du site, avec comme objectif de vérifier la présence de sols argileux, ou non, et si ces sols appartiennent à l'ensemble des « argiles gonflantes ».

Cette prestation correspond à une étude géotechnique préalable de type G1, phase d'étude de site (ES) et phase principes généraux de construction (PGC) (Norme NF P 94 – 500 de Novembre 2013).

Pour cette mission, nous avons réalisé des sondages à la pelle mécanique, complétés par des observations géologiques de surface et des recherches bibliographiques. Ces sondages nous ont permis de connaître la nature et l'organisation spatiale des sols ainsi que la présence éventuelle d'une nappe superficielle. Le but étant également d'effectuer si besoin la prise d'échantillons de sols représentatifs pour analyses en laboratoire. En fonction de la classification GTR obtenue de ces sols, on peut vérifier si la sous-classe déterminée correspond à des sols argileux et dans l'affirmative, s'ils appartiennent à la sous-classe des « argiles gonflantes ».

Ce rapport reste un document de description géologique et lithologique du site, avec un avis sur les comportements géotechniques prévisibles, mais ne constitue en aucun cas une étude géotechnique spécifique de fondations en ce qui concerne la future maison.

Cette étude a été réalisée à la demande de la société Terres du Soleil, route de Nîmes, 30980 Saint Dionisy.

2- SITUATION ET CONTEXTE GÉOLOGIQUE

2.1 Situation géographique

Le terrain intéressé par le projet est situé à proximité Est du centre village de Saint Mamert du Gard, au lieu-dit "Les Anguiles" et plus précisément au bout du chemin de Gajané (voir plan de situation en annexe).

2.2 Situation cadastrale

D'un point de vue cadastral, le projet sera établi sur les parcelles $1619,\,1780,\,1781,\,1893,\,1924$ et 1925 de la section B présentant une surface totale de $11\,\,225\,\,m^2$. Ce terrain est actuellement totalement enherbé et en pente faible vers le Sud.

2.3 Contexte géologique

D'un point de vue géologique, nous sommes situés à la limite entre le fossé Oligocène de Fons et les collines et plateaux calcaires du Nord de Nîmes.

Ce fossé Oligocène de Fons est un fossé d'effondrement d'orientation Sud-Ouest à Nord-Est et formé en distension. On rencontre ici au sein de ce fossé, la formation dite des grès de Célas représentée par des marnes sableuses, des grès grossiers et des lentilles de poudingue. Ici le substratum est représenté par des marnes et marnes sableuses de l'Oligocène. Ces marnes vont pouvoir présenter une épaisseur de plus de 100 m.

Elles sont recouvertes ici par des colluvions issus de l'altération des formations calcaires voisines (notamment à l'Est). Ces colluvions sont représentées par des cailloutis calcaires plus ou moins grossiers et à bords émoussés emballés dans une matrice limoneuse. (voir extrait carte géologique en annexe).

D'un point de vue hydrogéologique, les formations Oligocène ne vont pas présenter de capacités aquifères sauf dans les niveaux calcaires. Les marnes de l'Oligocène ne présentent quand à elle aucunes capacités aquifères.

Aucune trace de nappe ne sera donc à chercher en sondage.

3- RÉSULTATS DES SONDAGES

(Logs lithologiques et plan d'implantation fournis en annexe)

Nous avons réalisé 5 sondages au tractopelles.

A partir du sondage F3, le substratum est représenté par des marnes plus ou moins gréseuses marron ocre à traces noirâtres à débit en cailloutis centimétriques friables ou à débit en plaques et dalles.

Il n'a pas été rencontré en sondages sur les sondages F1 et F2 car le sol de surface s'est révélé trop compact mais il sera présent en profondeur.

Sur les sondages F1 et F2, on rencontre uniquement des colluvions. Elles sont d'abord grossières puis deviennent plus limoneuses.

A partir du sondages F3, les marnes sont rencontrés à partir de 2,1 m/TN et nous ont imposé rapidement des difficultés de terrassement.

Sur le sondages F4, elles sont rencontrées dès 1m/TN. Elles nous imposées un refus à 1,30 m/TN car elles sont très gréseuses.

Sur le sondage F5, on rencontre leur horizon d'altération dès 0,30 m/TN. A partir de 0,5 m/TN, elles se révèlent de plus en plus indurées et présente un débit en cailloutis friables.

Donc plus on va vers le Nord du terrain, plus l'épaisseur de colluvions augmente. Plus on va vers le Sud, plus l'épaisseur de colluvions diminue.

4 - ANALYSE EN LABORATOIRE

4.1 Classification du matériau

Afin de déterminer la classification GTR (Guides des Terrassements Routiers) des sols et leur éventuelle sensibilité au phénomène d'argiles gonflantes et de par l'homogénéité des sols, nous avons réalisé une analyse en laboratoire sur un échantillon pros dans le faciès des colluvions graveleuses.

Cette analyse a fourni les résultats suivants :

• Teneur en eau naturelle : W_{nat} = 7,6 %

Analyse granulométrique

Analyse granulométrique : % inférieur à 63 mm = 100 %

Analyse granulométrique : % inférieur à 50 mm = 96,4 %

• Analyse granulométrique : % inférieur à 31,5 mm = 88,6 %

- Analyse granulométrique : % inférieur à 20 mm = 77 %
- Analyse granulométrique : % inférieur à 10 mm = 59,2 %
- Analyse granulométrique : % inférieur à 5 mm = 45 %
- Analyse granulométrique : % inférieur à 2 mm = 33,5 %
- Analyse granulométrique : % inférieur à 1 mm = 31,8 %
- Analyse granulométrique : % inférieur à 0,4 mm = 28,1 %
- Analyse granulométrique : % inférieur à 0,2 mm = 25,1 %
- Analyse granulométrique : % inférieur à 0,125 mm = 23,7 %
- Analyse granulométrique : % inférieur à 0,08 mm = 22,9 %
- VBS = 1,21
- Classification des matériaux : Classe C₁B₅

Il s'agit donc pour ces colluvions, de sols gravelo-limono-sableux.

5 - CONCLUSIONS

Faciès des colluvions graveleuses :

Il s'agit donc de colluvions graveleuses à galets roulés, emballés dans une matrice sablo-limoneuse, avec une classification GTR d'un sol bien en dehors de la zone des argiles gonflantes.

Substratum Marno-gréseux:

La classification de ce sol rocheux sera de type R₃, donc bien en dehors de la famille des argiles gonflantes.

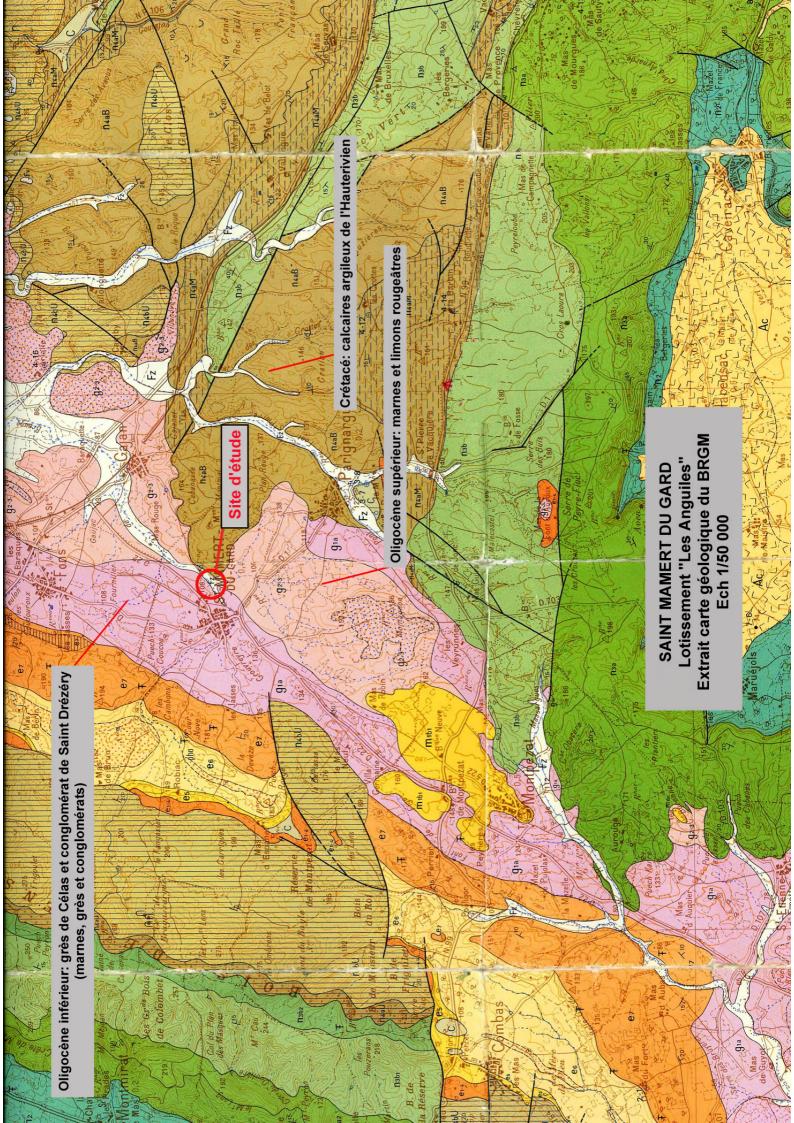
Nous restons à la disposition des concepteurs du projet pour tout renseignement complémentaire.

Olivier Martin Ingénieur géologue

ANNEXES

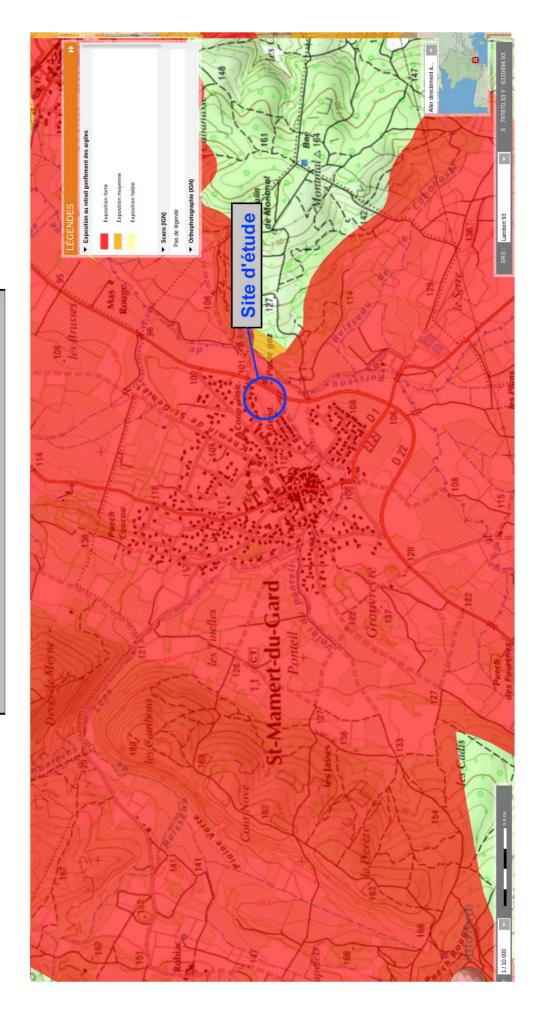
PLAN DE SITUATION GÉNÉRALE EXTRAIT CARTE GÉOLOGIQUE DU BRGM EXTRAIT CARTE ALÉAS ARGILES GONFLANTES DU BRGM

VUE AÉRIENNE


PLAN DE SITUATION CADASTRALE

PLAN D'IMPLANTATION SONDAGES

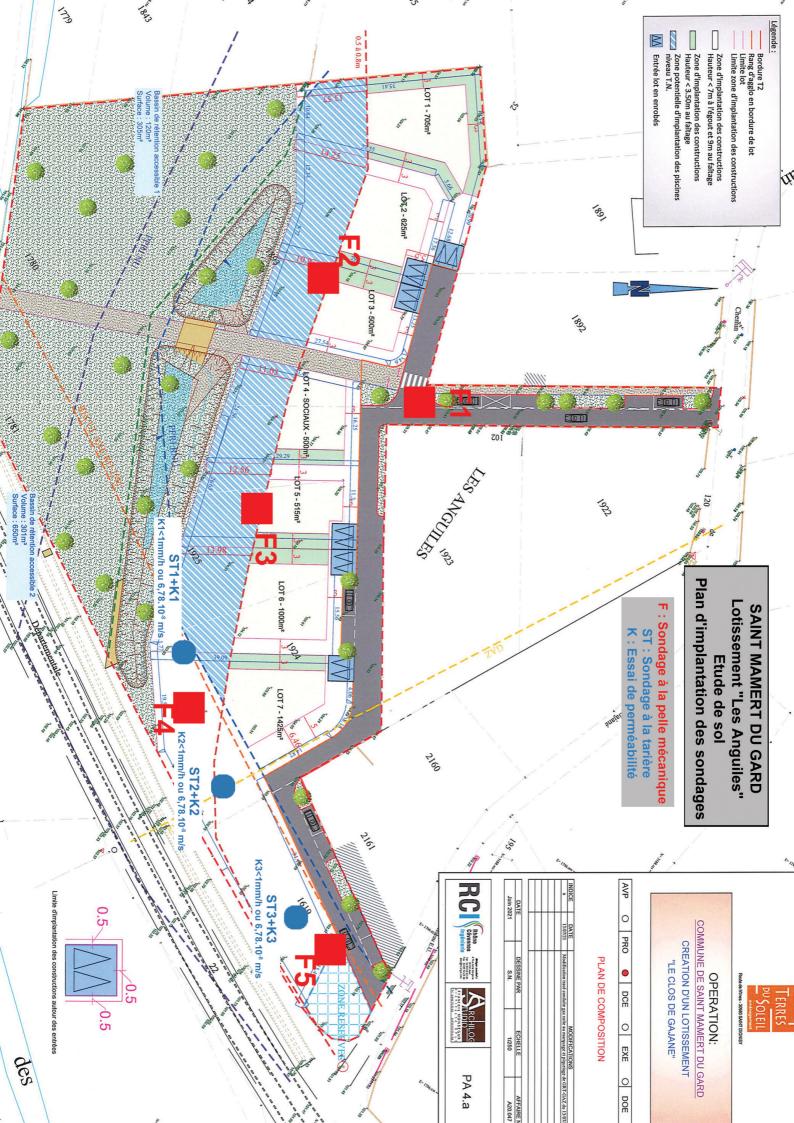
LOGS LITHOLOGIQUES


ANALYSE EN LABORATOIRE

la Condamine Site d'étude Parignargues 0,7 C Lotissement "Les Anguiles" SAINT MAMERT DU GARD Situation générale Ech: 1/25 000 Etude de Sol St-Mamert-du-Gard 183 le Genestas O Nimes es Garrigues Fangasset

SAINT MAMERT DU GARD Lotissement "Les Anguiles" Etude de sol Carte aléa retrait gonflement des argiles

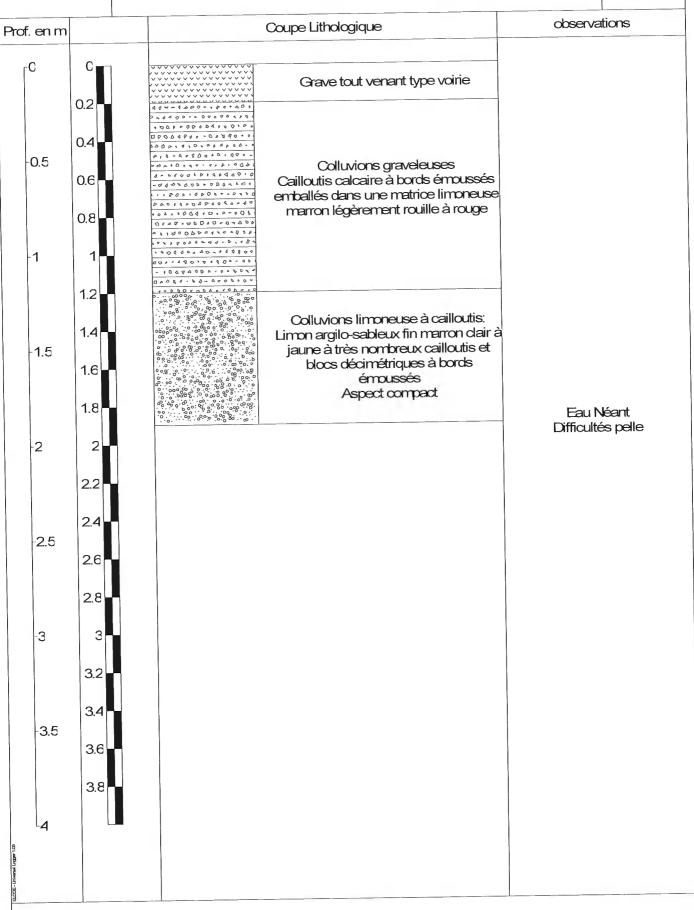
Site d'étude en aléa argiles gonflantes fort



DIRECTION GÉNÉRALE DES FINANCES PUBLIQUES Département : Le plan visualisé sur cet extrait est géré GARD par le centre des impôts foncier suivant : NIMES EXTRAIT DU PLAN CADASTRAL Commune: 67 Rue Salomon Reinach 30032 SAINT-MAMERT-DU-GARD 30032 NIMES Cedex 1 tél. 04.66.87.60.82 -fax 04.66.87.87.11 cdif.nimes@dgfip.finances.gouv.fr Section: B Feuille: 000 B 02 **SAINT MAMERT DU GARD** Lotissement "Les Anguiles" Échelle d'origine : 1/1250 Cet extrait de plan vous est délivré par : Échelle d'édition : 1/2500 Etude de sol Date d'édition : 16/03/2020 Situation cadastrale (fuseau horaire de Paris) cadastre.gouv.fr Ech 1/2500 Coordonnées en projection : RGF93CC44 ©2017 Ministère de l'Action et des Comptes publics LES ANGUILE

1795750

1796000

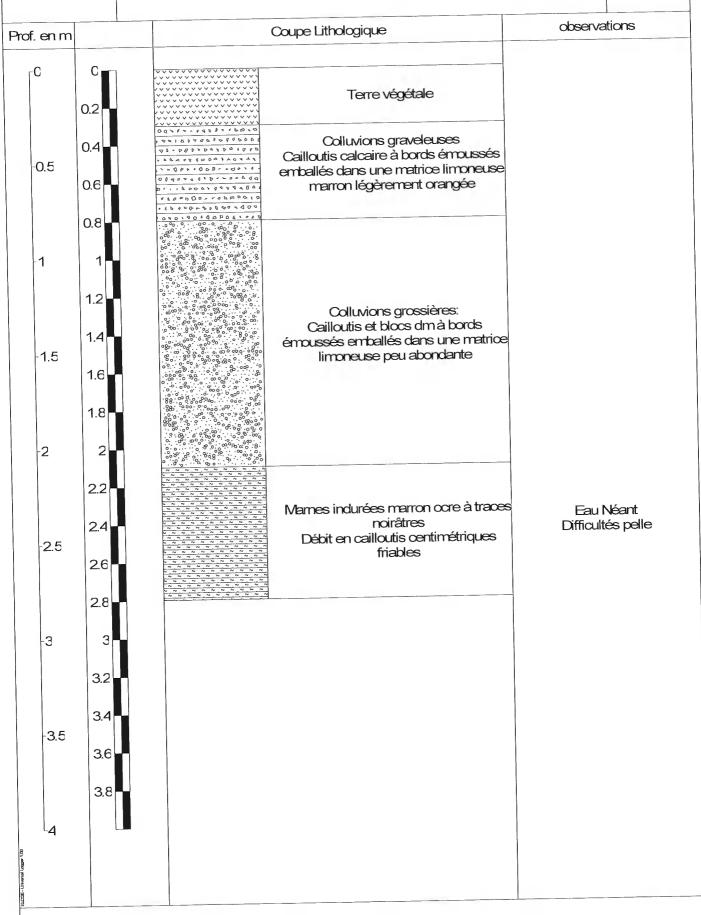


SAINT MAMERT DU GARD Lotissement Les Anguiles Avis géologique général Gestion eaux pluviales

F1

ECH1/20

SAINT MAMERT DU GARD Lotissement Les Anguiles Avis géologique général Gestion eaux pluviales F2


ECH1/20

en m			Coupe Lithologique	observations
С	С	· · · · · · · · · · · · · · · · · · ·	Terre végétale	
-0.5	0.2 0 .4 0 .6 0 .8 0 .8	0 4 4 4 6 6 7 1 8 7 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8		
-1	1.2	10000000000000000000000000000000000000	Colluvions graveleuses Cailloutis calcaire à bords émoussés emballés dans une matrice limoneuse	
-1.5	1.6		marron légèrement rouille à rouge Aspect homogène et meuble	
-2	1.8 - 2 - 2.2 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
-2.5	2.4	472104404040404		Eau Néant Difficultés pelle
	2.8			
-3	3.2			
-3.5	3.4			
	3.8			

SAINT MAMERT DU GARD Lotissement Les Anguiles Avis géologique général

Gestion eaux pluviales F3 ECH:1/20

SAINT MAMFRT DU GARD Lotissement Les Anguiles

Lotissement Les Anguiles Avis géologique général Gestion eaux pluviales F4

EOH:1/20

en m		Coupe Lithologique	observations
С	0.2	Terre végétale	
0.5	0.4	Colluvions grossières: Cailloutis et blocs dm à bords émoussés emballés dans une matrice limoneuse légèrement argileuse marron légèrement rouille	
1	1.2	Mames gréseuses indurées marron core Débit en plaques et dalles dm à pluridm	·
-1.5	1.6	Aspect de plus en plus induré	Eau Néant Refus à 1,30 m/TN
	1.8		
-2	2		
	2.2		
-2.5	2.6		
	2.8		
-3	3		
	3.4		
-3.5	3.6		
	3.8		
4			

SAINT MAMERT DU GARD Lotissement Les Anguiles Avis géologique général Gestion eaux pluviales F5

ECH 1/20

en m		Coupe Lithologique	observations
С	C	Terre végétale	
0.5	0.4	Marnes très altérées: Limon argileux marron dair à jaune	
	0.6	Mames altérées marron dair à jaune	
-1	1	ou ocre Débit en cailloutis cm à pluricm Aspect friable	
	1.2	\$\frac{1}{N} \tau_{1}	Eau Néant Difficultés pelle
-1.5	1.6		
	1.8		
-2	2		
	2.2		
-2.5	2.4		
	2.8		
-3	3		
	3.2		
-3.5	3.4		
	3.8		
[[] 4			

SAINT MAMERT DU GARD Lotissement Les Anguiles Avis céologique céréral

Avis géologique général Gestion eau pluviale ST1

ECH1/20

of. en m		Coupe Lithologique	observations
C	0.2	Terre végétale	
-0.5	0.4	Colluvions grossières: Cailloutis et blocs dm à bords émoussés emballés dans une matrice limoneuse légèrement argileuse marron légèrement rouille	
-1	1.2	Marnes gréseuses indurées marron ocre Débit en plaques et dalles dm à pluridm Aspect de plus en plus induré	K1<6,78.10-8 m/s ou K1<′ mm/h
-1.5	1.4	St. Co. No. St. No. St	
	1.8		
-2	2.2		
-2.5	2.6		
-3	2.8		
	3.2		
-3.5	3.6		
4	3.8		
ì			

OBSERVATIONS: sondage exécuté à la tarière à moteur

sondage exécuté à la tarière à moteur

SAINT MAMERT DU GARD Lotissement Les Anguiles Avis géologique général Gestion eau pluviale ST2

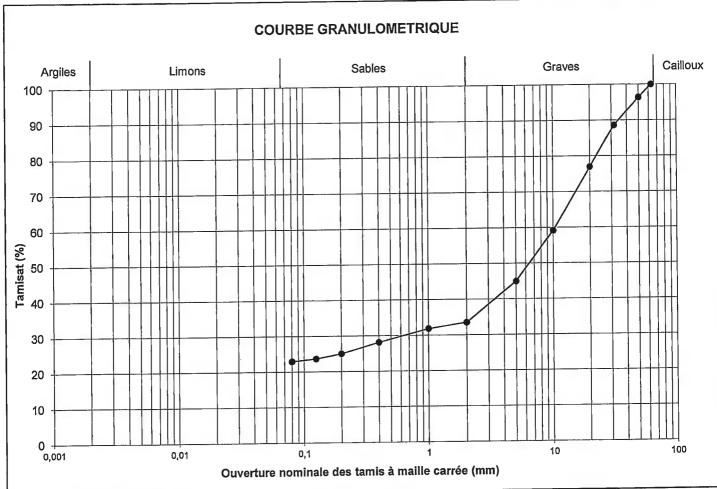
ECH 1/20

f. en m		Coupe Lithologique	observations
-0.5	0.2 0.4 0.6	Terre végétale Colluvions grossières: Cailloutis et blocs dm à bords émoussés emballés dans une matrice limoneuse légèrement argileuse marron légèrement rouille Marmes gréseuses indurées marron ocre	K2<6,78.10-8 m/s ou K2<′ mm/h
1	0.8	Débit en plaques et dalles dm à pluridm Aspect de plus en plus induré	
-1.5	1.2 - 1.4 - 1.6 -		
-2	2.2		
-2.5	2.4		
-3	3 -		
-3.5	3.4		
	3.8		

SAINT MAMERT DU GARD Lotissement Les Anguiles Avis géologique général Gestion eau pluviale ST3

EOH1/20

of, en m		Coupe Lithologique	observations
C	0.2	Terre végétale Marnes très altérées: Limon argileux marron dair à jaune	
-0.5	0.4	Marnes altérées marron dair à jaune ou ocre Débit en cailloutis cm à pluricm Aspect friable	K3<6,78.10-8 m/s ou K3<1 mm/h
-1	0.8	St. 20 No. 20 Oc. 20 No. 30 Mar. St.	
-1.5	1.2		
1.5	1.8		
-2	2.2		
-2.5	2.4		
-3	2.8		
	3.2		
-3.5	3.6		
4			


 $D_{10} = /$

Facteur de courbure C_c = /

ANALYSE GRANULOMETRIQUE

Méthode par tamisage à sec après lavage Norme NF P 94-056

DOSSIER : 20-118	DOSSIER: 20-118				
	COMMUNE : SAINT MAMERT DU GARD				
	CHANTIER: Lotissement Terres du soleil				
Sondage: F3	Sans quartage	I _p = /	l _c = /		
Profondeur: 0,3-0,8 m/TA	Profondeur d'essai : /	IPI= 27,3	wopn= /		
Date d'essai : mars-20	Température de séchage : 105°	Classification NF	P 11-300 : C ₁ B ₅ m		

ALEURS GRANUL Tamis d (mm)	1000	400	200	100	80	63					
Passant (%)	/	1	/	/	/	100,0					
ALEURS GRANUL				10		1 2	1 1	0.4	0,2	0,125	0,08
Tamis d (mm)	50	31,5	20	10	5	2	- 1 -	0,4			22,9
Passant (%)	96,4	88,6	77,0	59,2	45,0	33,5	31,8	28,1	25,1	23,7	22,0
ALEURS SEDIME	NTOMETRI	QUES				,		,		/ /	
Tamis d (µm)	/	/				/	/			',	
Passant (%)	1	/	1 /	l /	/	1 /	/	/	/	/	

D₃₀= /

Facteur d'uniformité $C_u = /$

Graves et limon légèrement sableux

DETERMINATION DES REFERENCES DE COMPACTAGE ET DE PORTANCE D'UN MATERIAU

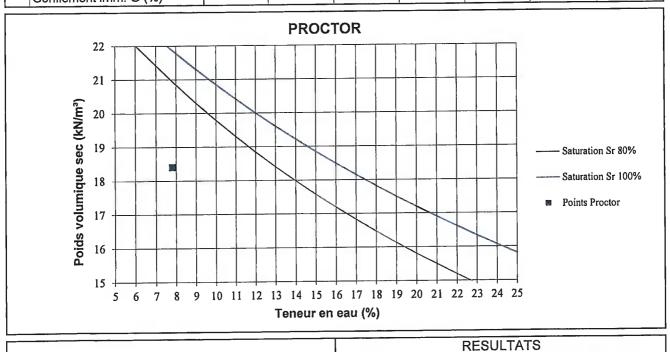
Normes NF P 94 093 et NF P 94 078

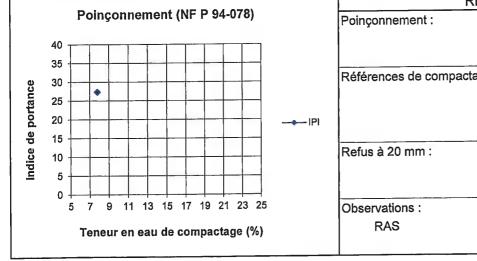
20-118 SAINT MAMERT DU GARD Lotissement Terres du soleil

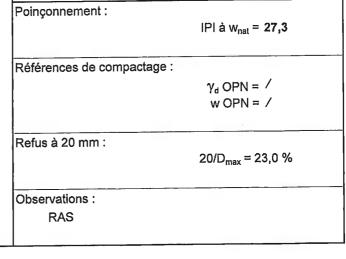
Date d'essai: mars-20

Sondage: F3

Profondeur: 0,3-0,8 m/TA


Dénomination du matériau : graves et limon légèrement sableux


Caractéristiques de l'essai Critères d'identification Coupure granulométrique testée : 0/20mm Classification NF P 11-300 : C₁B₅ $w_{nat} = 7,6\%$ Energie: Normale Etat hydrique naturel: m $D_{max} = 63mm$ Moule: CBR


VBS= 1,21

Essai sur sol: Non traité |_p= / 3 5 4 N° point 7.8 w sur matériau compacté (%) 7,6 w avant compactage (%) w sur matériau traité (%) 18,40 γ_d (kN.m⁻³)

IPI 27,3 CBR immersion (4 jours) w après immersion (%) Gonflement imm. G (%)

DOSSIER: 20-118

COMMUNE: SAINT MAMERT DU GARD

CHANTIER: Lotissement Terres du soleil

DATE: mars-20

Echantillon		
Point de prélèvement		F3
Profondeur	en mètres	0,3-0,8
Description		
Graves et limon sableux sableux brun		
Teneur en eau	w _{nat.} en %	7,6
Essai au bleu de méthylène		
Fraction de sol choisie	<u> </u>	0/5mm
Passant de fraction choisie sur fraction 0/50mm	en %	46,7
Valeur de bleu sur fraction de sol choisie	Vb	2,60
Valeur de bleu sur le sol	VBS	1,21
Granulométrie		
Pourcentage sur sol sec de passant à	63mm	100,0
	50mm	96,4
	2mm	33,5
	0,4mm	28,1
	0,08mm	22,9
Classe GTR		C₁B₅m
Essai Proctor		
Poinçonnement (sur la fraction 0/20mm)	IPI à W _{nat.}	27,3